SOLUTION OF MIXED CONTACT PROBLEMS IN THE THEORY OF NONSTATIONARY HEAT CONDUCTION BY THE METHOD OF SUMMATION-INTEGRAL EQUATIONS

V. P. Kozlov and P. A. Mandrik

UDC 517.968, 536.24

The laws governing the development of spatial nonstationary temperature fields in a bounded cylinder and a half-space where one of the end surfaces of the cylinder touches the surface of the half-space in a circular region are determined. A solution of a mixed axisymmetric nonstationary problem of heat conduction is obtained in the region of Laplace transforms. In solution of this problem, there appear summation-integral equations with the parameter of the integral Laplace transform (L-parameter) and the parameter of the finite integral Hankel transform (H-parameter).

The formulation of the problem is in the determination of the laws governing the development of spatial nonstationary temperature fields in a half-space and a bounded cylinder of radius R and height h where one of the end surfaces of the bounded cylinder touches the surface of the half-space. In this case, the thermophysical characteristics of the considered bodies and their initial temperatures are different and the side and nontouching end surfaces of the cylinder are maintained at a constant initial temperature. Ideal heat insulation exists on the half-space surface beyond the circular region of contact.

We introduce the following notation: r and z are the cylindrical coordinates, τ is the time; $T_{1}(r, z, \tau)$ is the temperature of the semibounded body $(r>0, z>0, \tau>0) ; T_{2}(r, z, \tau)$ is the temperature of the cylinder $(0<r<R,-h<z<0, \tau>0) ; \lambda_{1}>0$ and $a_{2}>0$ are the coefficients of thermal conductivity and thermal diffusivity of the semibounded body and the cylinder, respectively.

We consider the system of two heat-conduction equations

$$
\begin{gather*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{1}(r, z, \tau)}{\partial r}\right)+\frac{\partial^{2} T_{1}(r, z, \tau)}{\partial z^{2}}=\frac{1}{a_{1}} \frac{\partial T_{1}(r, z, \tau)}{\partial \tau}, r>0, z>0, \tau>0 ; \tag{1}\\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{2}(r, z, \tau)}{\partial r}\right)+\frac{\partial^{2} T_{2}(r, z, \tau)}{\partial z^{2}}=\frac{1}{a_{2}} \frac{\partial T_{2}(r, z, \tau)}{\partial \tau}, 0<r<R,-h<z<0, \tau>0, \tag{2}
\end{gather*}
$$

with the initial conditions

$$
\begin{equation*}
T_{1}(r, z, 0)=T_{01}, r>0, \quad z>0 ; \quad T_{2}(r, z, 0)=T_{02}, \quad 0<r<R, \quad-h<z<0, \quad T_{01} \neq T_{02}, \tag{3}
\end{equation*}
$$

and the boundary conditions (within the corresponding ranges of change of the coordinates)

Belarusian State University, Minsk, Belarus; email: mandrik@fpm.bsu.unibel.by. Translated from In-zhenerno-Fizicheskii Zhurnal, Vol. 74, No. 3, pp. 70-74, May-June, 2001. Original article submitted November $24,2000$.

$$
\begin{gather*}
\frac{\partial T_{1}(r, \infty, \tau)}{\partial z}=\frac{\partial T_{1}(0, z, \tau)}{\partial r}=\frac{\partial T_{1}(\infty, z, \tau)}{\partial r}=\frac{\partial T_{2}(0, z, \tau)}{\partial r}=0 ; \tag{4}\\
T_{2}(R, z, \tau)=T_{02}, T_{2}(r,-h, \tau)=T_{02} ; \tag{5}\\
T_{1}(r, 0, \tau)=T_{2}(r, 0, \tau), 0<r<R ; \tag{6}\\
K_{\lambda} \frac{\partial T_{1}(r, 0, \tau)}{\partial z}=-\frac{\partial T_{2}(r, 0, \tau)}{\partial z}, 0<r<R ; \tag{7}\\
\frac{\partial T_{1}(r, 0, \tau)}{\partial z}=0, R<r<\infty ; \tag{8}
\end{gather*}
$$

where $K_{\lambda}=\lambda_{1} / \lambda_{2}$.
We note that, according to [1], conditions (6) and (7) determine the boundary condition of the fourth kind in the region $z=0,0<r<R$, and the set of conditions (6)-(8) determines mixed boundary conditions on the surface $z=0$ in the corresponding regions of change of the variable r.

The solution of Eq. (1) with conditions (3)-(5) in the region of the Laplace transform $\bar{T}_{1}(r, z, s)=$ $\int_{0}^{\infty} T_{1}(r, z, \tau) \exp (-s \tau) d \tau, \operatorname{Re} s>0$, can be written in the form [2]

$$
\begin{equation*}
\bar{T}_{1}(r, z, s)=\frac{T_{01}}{s}+\int_{0}^{\infty} \bar{C}(p, s) \exp \left(-z \sqrt{p^{2}+\frac{s}{a_{1}}}\right) J_{0}(p r) p d p, r>0, \quad z>0 \tag{9}
\end{equation*}
$$

where $J_{0}(p r)$ is the Bessel function of the first kind and zero order, $\bar{C}(p, s)$ is the unknown analytical function, and the restriction Re $s>0$ on the parameter of the Laplace transform here and below is omitted in our notation for brevity.

The solution of Eq. (2) with conditions (3)-(5) in the region of L-transforms using the finite Hankel transform $\bar{T}_{2 \mathrm{H}}(p, z, s)=\int_{0}^{R} \bar{T}_{2}(r, z, s) J_{0}(p r) r d r$ can be found in the form [2]

$$
\begin{align*}
& \bar{T}_{2}(r, z, s)=\frac{T_{02}}{s}+\sum_{m=1}^{\infty} \frac{2 J_{0}\left(\frac{\mu_{m}}{R} r\right)}{R^{2} J_{1}^{2}\left(\mu_{m}\right)} \bar{B}\left(\frac{\mu_{m}}{R}, s\right) \sinh \left(|z| \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right) \times \\
\times & {\left[\cot \left(|z| \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right)-\cot \left(h \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right)\right], 0<r<R,-h<z<0, } \tag{10}
\end{align*}
$$

where $J_{1}\left(\mu_{m}\right)$ is the Bessel function of the first kind and first order, $\bar{B}\left(\mu_{m} / R, s\right)$ is an unknown analytical function, and μ_{m} are the roots of the equation

$$
\begin{equation*}
J_{0}(\mu)=0 . \tag{11}
\end{equation*}
$$

Taking into account the mixed boundary conditions (6)-(8) on the surface $z=0$, we can explicitly obtain the following system of summation-integral equations with the L-parameter:

$$
\begin{gather*}
\frac{T_{01}}{s}+\int_{0}^{\infty} \bar{C}(p, s) J_{0}(p r) p d p=\frac{T_{02}}{s}+\sum_{m=1}^{\infty} \frac{2 J_{0}\left(\frac{\mu_{m}}{R} r\right)}{R^{2} J_{1}^{2}\left(\mu_{m}\right)} \bar{B}\left(\frac{\mu_{m}}{R}, s\right), 0<r<R ; \tag{12}\\
\int_{0}^{\infty} \bar{C}(p, s) \sqrt{p^{2}+\frac{s}{a_{1}}} J_{0}(p r) p d p= \\
=-\sum_{m=1}^{\infty} \frac{2 J_{0}\left(\mu_{m} \frac{r}{R}\right)}{K_{\lambda} R^{2} J_{1}^{2}\left(\mu_{m}\right)} \bar{B}\left(\frac{\mu_{m}}{R}, s\right) \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}} \cot \left(h \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right), 0<r<R ; \tag{13}\\
\int_{0}^{\infty} \bar{C}(p, s) \sqrt{p^{2}+\frac{s}{a_{1}}} J_{0}(p r) p d p=0, R<r<\infty, \tag{14}
\end{gather*}
$$

whence the unknown functions $\bar{B}\left(\mu_{m} / R, s\right)$ and $\bar{C}(p, s)$ must be determined.
We find the value of the function $\bar{B}\left(\mu_{m} / R, s\right)$ from Eq. (13), expanding the functions within the range $(0, R)$ into the Fourier-Bessel series in positive roots of Eq. (11) of the form [3]

$$
\bar{f}(r, s)=\sum_{m=1}^{\infty} A_{m} J_{0}\left(\frac{\mu_{m}}{R} r\right), A_{m}=\frac{2}{R^{2} J_{1}^{2}\left(\mu_{m}\right)} \int_{0}^{R} r \bar{f}(r, s) J_{0}\left(\frac{\mu_{m}}{R} r\right) d r .
$$

As a result, we have

$$
\begin{equation*}
\bar{B}\left(\frac{\mu_{m}}{R}, s\right)=-\frac{K_{\lambda} R^{2} \tanh \left(h \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right.}{2 \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}} J_{1}^{2}\left(\mu_{m}\right) \int_{0}^{\infty} \bar{C}(p, s) \sqrt{p^{2}+\frac{s}{a_{1}}} J_{0}(p r) p d p, 0<r<R, \tag{15}
\end{equation*}
$$

since (see, e.g., [1])

$$
\begin{gathered}
\int_{0}^{R} J_{0}\left(\frac{\mu_{m}}{R} r\right) J_{0}(p r) r d r= \begin{cases}0, & \text { when } p \neq \frac{\mu_{m}}{R}, \\
\frac{R^{2}}{2} J_{1}^{2}\left(\mu_{m}\right), & \text { when } p=\frac{\mu_{m}}{R},\end{cases} \\
\sum_{m=1}^{\infty} \frac{J_{0}\left(\frac{\mu_{m}}{R} r\right)}{\sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}} \tanh \left(h \sqrt{\frac{\mu_{m}^{2}}{R^{2}}+\frac{s}{a_{2}}}\right)=\frac{J_{0}(p r)}{\sqrt{p+\frac{s}{a_{2}}}} \tanh \left(h \sqrt{p^{2}+\frac{s}{a_{2}}}\right), 0<r<R .
\end{gathered}
$$

Substituting (15) into Eq. (12), we come to the paired integral equations with the L-parameter

$$
\begin{gather*}
\int_{0}^{\infty} \bar{C}(p, s)\left[1+K_{\lambda} \sqrt{\left.\left(\frac{p^{2}+\frac{s}{a_{1}}}{p^{2}+\frac{s}{a_{2}}}\right) \tanh \left(h \sqrt{p^{2}+\frac{s}{a_{2}}}\right)\right] J_{0}(p r) p d p=\frac{T_{02}}{s}-\frac{T_{01}}{s}, 0<r<R}\right. \tag{16}\\
\int_{0}^{\infty} \bar{C}(p, s) \sqrt{p^{2}+\frac{s}{a_{1}}} J_{0}(p r) p d p=0, \quad R<r<\infty \tag{17}
\end{gather*}
$$

To solve the paired integral equations (16) and (17), i.e., to determine the unknown analytical function $\bar{C}(p, s)$, we use the substitution

$$
\begin{equation*}
\bar{C}(p, s)=\frac{1}{\sqrt{p^{2}+\frac{s}{a_{1}}}} \int_{0}^{R} \bar{\varphi}(t, s) \cos \left(t \sqrt{p^{2}+\frac{s}{a_{1}}}\right) d t \tag{18}
\end{equation*}
$$

which provides the fulfillment of Eq. (17) automatically due to the corresponding discontinuous integral within the range $R<r<\infty$ [4].

Substitution of (18) into (16) leads to the integral equation with the L-parameter for determination of the unknown analytical function $\bar{\varphi}(t, s)$:

$$
\begin{gather*}
\int_{0}^{r} \frac{\bar{\varphi}(t, s)}{\sqrt{r^{2}-t^{2}}} \exp \left(-\sqrt{\frac{s}{a_{1}}\left(r^{2}-t^{2}\right)}\right) d t-\int_{r}^{R} \frac{\bar{\varphi}(t, s)}{\sqrt{t^{2}-r^{2}}} \sin \left(\sqrt{\frac{s}{a_{1}}\left(t^{2}-r^{2}\right)}\right) d t+ \\
+K_{\lambda} \int_{0}^{R} \bar{\varphi}(t, s) d t \int_{0}^{\infty} \frac{J_{0}(p r) p}{\sqrt{p^{2}+\frac{s}{a_{2}}}} \tanh \left(h \sqrt{p^{2}+\frac{s}{a_{2}}}\right) \cos \left(t \sqrt{p^{2}+\frac{s}{a_{1}}}\right) d p=\frac{T_{02}}{s}-\frac{T_{01}}{s}, 0<r<R . \tag{19}
\end{gather*}
$$

We note that the inverse Laplace transform exists for the left-hand side of Eq. (19), since this is true for the right-hand side, viz.: $L^{-1}\left[\frac{T_{02}}{s}-\frac{T_{01}}{s}\right]=T_{02}-T_{01} \neq 0$.

Determination of $\bar{\varphi}(t, s)$ directly from Eq. (19) is a rather labor-consuming problem. Here we suggest a method of determination of $\bar{\varphi}(t, s)$ by reducing Eq. (19) to a simpler form. For this purpose, having replaced r by μ in advance, we multiply the left- and right-hand sides of Eq. (19) by the integrating factor $2 \mu \frac{\cos \left(\sqrt{\frac{s}{a_{1}}\left(r^{2}-\mu^{2}\right)}\right)}{\left(r^{2}-\mu^{2}\right)^{1 / 2}}$ and integrate with respect to μ within the limits from zero to r. Then Eq. (19) is reduced to the form

$$
\begin{equation*}
\bar{\varphi}(r, s)-\frac{1}{\pi} \int_{0}^{R} \bar{\varphi}(t, s) \bar{K}(r, t, s) d t=\frac{2\left(T_{02}-T_{01}\right)}{\pi s} \cos \left(r \sqrt{\frac{s}{a_{1}}}\right), 0<r<R, \tag{20}
\end{equation*}
$$

where

$$
\begin{gathered}
\bar{K}(r, t, s)=\frac{\sin \left[(t+r) \sqrt{\frac{s}{a_{1}}}\right]}{t+r}+\frac{\sin \left[(t-r) \sqrt{\frac{s}{a_{1}}}\right]}{t-r}- \\
-K_{\lambda} \int_{0}^{\infty} \frac{p}{\sqrt{p^{2}+\frac{s}{a_{2}}}} \tanh \left(h \sqrt{p^{2}+\frac{s}{a_{2}}}\right)\left[\cos \left((r-t) \sqrt{p^{2}+\frac{s}{a_{1}}}\right)+\cos \left((r+t) \sqrt{p^{2}+\frac{s}{a_{1}}}\right)\right] d p .
\end{gathered}
$$

We note that in derivation of (20) the following values of the integrals were taken into account:

$$
\begin{gathered}
\int_{0}^{r} \frac{\cos \left(\sqrt{\frac{s}{a_{1}}\left(r^{2}-\mu^{2}\right)}\right)}{\sqrt{r^{2}-\mu^{2}}} J_{0}(p \mu) \mu d \mu=\frac{\sin \left(r \sqrt{p^{2}+\frac{s}{a_{1}}}\right)}{\sqrt{p^{2}+\frac{s}{a_{1}}}}, \\
\int_{t}^{r} \frac{\cos \left(\sqrt{\frac{s}{a_{1}}\left(r^{2}-\mu^{2}\right)}\right) \cosh \left(\sqrt{\frac{s}{a_{1}}\left(\mu^{2}-t^{2}\right)}\right)}{\sqrt{\left(r^{2}-\mu^{2}\right)\left(\mu^{2}-t^{2}\right)}} \mu d \mu=\frac{\pi}{2}, \\
2 \int_{0}^{r} \frac{\sin \left(\sqrt{\frac{s}{a_{1}}\left(r^{2}-\mu^{2}\right)}\right) \cos \left(\sqrt{\frac{s}{a_{1}}\left(r^{2}-\mu^{2}\right)}\right)}{\sqrt{\left(t^{2}-\mu^{2}\right)\left(r^{2}-\mu^{2}\right)}} \mu d \mu=\operatorname{Si}\left((t+r) \sqrt{\frac{s}{a_{1}}}\right)-\operatorname{Si}\left((t-r) \sqrt{\frac{s}{a_{1}}}\right), \\
\bar{\varphi}^{*}(r, s)-\frac{1}{\pi} \int_{0}^{R} \bar{\varphi}^{*}(t, s) \bar{K}^{*}(r, t, s) d t=\frac{2\left(T_{02}-T_{01}\right)}{\pi s}, 0<r<R,
\end{gathered}
$$

where $\operatorname{Si}(z)=\int_{0}^{z} \frac{\sin t}{t} d t$ is the sine integral function (integral sine).
The method for determining $\bar{\varphi}(r, s)$ from an equation of the type (20) is suggested, for example, in [5].

We note that if $R \rightarrow \infty$ and $h \rightarrow \infty$, then we have a one-dimensional nonstationary case of thermal contact of two semibounded bodies with different initial temperatures and different thermophysical properties [1]. In this case, the paired equations (16) and (17) do not appear.

Thus, having determined the value of the function $\bar{\varphi}(t, s)$ from Eqs. (19) or (20), we find the value of the function $\bar{C}(p, s)$ by formula (18) and then the value of the function $\bar{B}\left(\mu_{m} / R, s\right)$ by formula (15). Finally, using formulas (9) and (10), we find the temperature fields $\bar{T}_{1}(r, z, s)$ and $\bar{T}_{2}(r, z, s)$ in the region of L-transforms, and, having applied the inverse Laplace transformation, we determine the corresponding values of the inverse transforms $T_{1}(r, z, \tau)$ and $T_{2}(r, z, \tau)$.

In conclusion, we note that the existence of the continuously differentiable solution of the integral equation with the L-parameter (20) can be proved by writing it in the form

$$
\bar{\varphi}^{*}(r, s)-\frac{1}{\pi} \int_{0}^{R} \bar{\varphi}^{*}(t, s) \bar{K}^{*}(r, t, s) d t=\frac{2\left(T_{02}-T_{01}\right)}{\pi s}, 0<r<R,
$$

where

$$
\bar{\varphi}^{*}(r, s)=\frac{\bar{\varphi}(r, s)}{\cos \left(r \sqrt{\frac{s}{a_{1}}}\right)} ; \bar{K}^{*}(r, t, s)=\frac{\cos \left(t \sqrt{\frac{s}{a_{1}}}\right)}{\cos \left(r \sqrt{\frac{s}{a_{1}}}\right)} \bar{K}(r, t, s)
$$

Then, since the inverse Laplace transform $L^{-1}\left[\frac{2\left(T_{02}-T_{01}\right)}{\pi s}\right]=\frac{2\left(T_{02}-T_{01}\right)}{\pi}$ exists, we can write the equation

$$
\varphi^{*}(r, \tau)-\frac{1}{\pi} \int_{0}^{R} d t \int_{0}^{\tau} \varphi^{*}(t, \xi) K^{*}(r, t, \tau-\xi) d \xi=\frac{2\left(T_{02}-T_{01}\right)}{\pi}, 0<r<R, \tau>0
$$

where $\varphi^{*}(r, \tau)=L^{-1}\left[\bar{\varphi}^{*}(r, s)\right]$ and $K^{*}(r, t, \tau)=L^{-1}\left[\bar{K}^{*}(r, t, s)\right]$, and according to the classical Fredholm theory [6] the convergence of the integral

$$
\int_{0}^{\infty}\left|\frac{p}{\sqrt{p^{2}+\frac{s}{a_{2}}}} \tanh \left(h \sqrt{p^{2}+\frac{s}{a_{1}}}\right)\left[\cos \left((r-t) \sqrt{p^{2}+\frac{s}{a_{1}}}\right)+\cos \left((r+t) \sqrt{p^{2}+\frac{s}{a_{1}}}\right)\right]\right| d p, \quad 0<r, t<R
$$

and fulfillment of the inequality

$$
\max \int_{0}^{R} \int_{0}^{\tau}\left|K^{*}(r, t, \xi)\right| d \xi d t<\pi, \quad 0<r<R, \quad \tau>0
$$

are the sufficient conditions for the existence of its solution.

REFERENCES

1. A. V. Luikov, Theory of Heat Conduction [in Russian], Moscow (1967).
2. V. P. Kozlov and P. A. Mandrik, Systems of Integral and Differential Equations with the L-Parameter in Problems of Mathematical Physics and Methods for Identification of Thermal Characteristics [in Russian], Minsk (2000).
3. V. P. Kozlov, Two-Dimensional Axisymmetric Nonstationary Problems of Heat Conduction [in Russian], Minsk (1986).
4. V. P. Kozlov, P. A. Mandrik, and N. I. Yurchuk, Inzh.-Fiz. Zh., 71, No. 4, 734-743 (1998).
5. V. P. Kozlov, P. A. Mandrik, and N. I. Yurchuk, Vestn. Belor. Univer., Ser. 1, No. 2, 37-42 (1999).
6. Ya. S. Uflyand, Method of Paired Equations in Problems of Mathematical Physics [in Russian], Leningrad (1977).
