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The laws governing the development of spatial nonstationary temperature fields in a bounded cylinder
and a half-space where one of the end surfaces of the cylinder touches the surface of the half-space
in a circular region are determined. A solution of a mixed axisymmetric nonstationary problem of
heat conduction is obtained in the region of Laplace transforms. In solution of this problem, there
appear summation-integral equations with the parameter of the integral Laplace transform (L-pa-
rameter) and the parameter of the finite integral Hankel transform (H-parameter).

The formulation of the problem is in the determination of the laws governing the development of
spatial nonstationary temperature fields in a half-space and a bounded cylinder of radius R and height h
where one of the end surfaces of the bounded cylinder touches the surface of the half-space. In this case, the
thermophysical characteristics of the considered bodies and their initial temperatures are different and the side
and nontouching end surfaces of the cylinder are maintained at a constant initial temperature. Ideal heat insu-
lation exists on the half-space surface beyond the circular region of contact.

We introduce the following notation: r and z are the cylindrical coordinates, τ is the time; T1(r, z, τ)
is the temperature of the semibounded body (r > 0, z > 0, τ > 0); T2(r, z, τ)  is the temperature of the cylinder
(0 < r < R, −h < z < 0, τ > 0); λ1 > 0 and a2 > 0 are the coefficients of thermal conductivity and thermal dif-
fusivity of the semibounded body and the cylinder, respectively.

We consider the system of two heat-conduction equations 
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 ,   0 < r < R ,   − h < z < 0 ,   τ > 0 , (2)

with the initial conditions

T1 (r, z, 0) = T01 ,   r > 0 ,   z > 0 ;   T2 (r, z, 0) = T02 ,   0 < r < R ,   − h < z < 0 ,   T01 ≠ T02 , (3)

and the boundary conditions (within the corresponding ranges of change of the coordinates)
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where Kλ = λ1
 ⁄ λ2.

We note that, according to [1], conditions (6) and (7) determine the boundary condition of the fourth
kind in the region z = 0, 0 < r < R, and the set of conditions (6)−(8) determines mixed boundary conditions
on the surface z = 0 in the corresponding regions of change of the variable r.

The solution of Eq. (1) with conditions (3)−(5) in the region of the Laplace transform T
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where J0(pr) is the Bessel function of the first kind and zero order, C
__

(p, s) is the unknown analytical func-
tion, and the restriction Re s > 0 on the parameter of the Laplace transform here and below is omitted in our
notation for brevity.

The solution of Eq. (2) with conditions (3)−(5) in the region of L-transforms using the finite Hankel
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  ,   0 < r < R ,   − h < z < 0 , (10)

where J1(µm) is the Bessel function of the first kind and first order, B
__

(µm
 ⁄ R, s) is an unknown analytical

function, and µm are the roots of the equation

J0 (µ) = 0 . (11)
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Taking into account the mixed boundary conditions (6)−(8) on the surface z = 0, we can explicitly
obtain the following system of summation-integral equations with the L-parameter:
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whence the unknown functions B
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We find the value of the function B
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(µm
 ⁄ R, s) from Eq. (13), expanding the functions within the range

(0, R) into the Fourier−Bessel series in positive roots of Eq. (11) of the form [3]
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Substituting (15) into Eq. (12), we come to the paired integral equations with the L-parameter
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To solve the paired integral equations (16) and (17), i.e., to determine the unknown analytical func-
tion C
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which provides the fulfillment of Eq. (17) automatically due to the corresponding discontinuous integral
within the range R < r < ∞ [4].

Substitution of (18) into (16) leads to the integral equation with the L-parameter for determination of
the unknown analytical function ϕ
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We note that the inverse Laplace transform exists for the left-hand side of Eq. (19), since this is true
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Determination of ϕ
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We note that in derivation of (20) the following values of the integrals were taken into account:
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The method for determining ϕ
__

(r, s) from an equation of the type (20) is suggested, for example, in
[5].

We note that if R → ∞ and h → ∞, then we have a one-dimensional nonstationary case of thermal
contact of two semibounded bodies with different initial temperatures and different thermophysical properties
[1]. In this case, the paired equations (16) and (17) do not appear.

Thus, having determined the value of the function ϕ
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(t, s) from Eqs. (19) or (20), we find the value
of the function C
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(p, s) by formula (18) and then the value of the function B
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nally, using formulas (9) and (10), we find the temperature fields T
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1(r, z, s) and T
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2(r, z, s) in the region of

L-transforms, and, having applied the inverse Laplace transformation, we determine the corresponding values
of the inverse transforms T1(r, z, τ) and T2(r, z, τ).

In conclusion, we note that the existence of the continuously differentiable solution of the integral
equation with the L-parameter (20) can be proved by writing it in the form
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and fulfillment of the inequality
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are the sufficient conditions for the existence of its solution.
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